
3章関数とグラフ
第 1節　 2次関数

BasicとCheck 問題 150,151と 161の解説　 pp.31-33

1 2次関数の最大値・最小値問題

2次関数の最大値・最小値問題はいくつかのパターンに分類され，基本をしっかり抑え
れば大丈夫です．

1.1 定義域無し-全ての実数 x-

定義域の指定がない場合，平方完成してグラフを書きます．頂点の座標が最大値もしく
は最小値になります．

アプローチ� �
� 平方完成してグラフの概形を描く

y = ax2 + bx+ c =⇒ y = a(x− p)2 + q

繰り返して掲載しますが，2次函数のグラフです．

1. a > 0のとき (図 1)　 x = pのとき最小値 y = q

2. a < 0のとき (図 2) 　 x = pのとき最大値 y = q� �
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図 1: a > 0のとき
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図 2: a < 0の参照とき
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1.2 定義域がある場合

変数 xの範囲が指定されている場合は対称軸と頂点の関係で３つのパターンです．

３つのパターン� �
・ここでは，下に凸のグラフで定義域を a ≤ x ≤ bとします．

1. 定義域が対称軸の左側

図 3に示しているように最大値は y = f(a)で最小値は y = f(b)となります．

2. 定義域が対称軸の右側

図 4に示しているように最大値は y = f(b)で最小値は y = f(b)となります．

3. 対称軸が定義域内の場合

図 5と 6に示しているように，頂点が最小値を y = f(p)取る．最大値は f(a)と
f(b)を比較して決定することになる．� �
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図 3: 定義域が軸の左側
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図 4: 定義域が軸の右側
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図 5: 定義域の中に対称軸を含む その１
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図 6: 定義域の中に対称軸を含む その２

3



2 問題150:定義域の指定なし

1. y = x2 − 4x+ 8

平方完成すると y = (x− 2)2 +4を得ます．よって，最小値は x = 2の時に y = 4と
なります．頂点の座標が (2, 4)で下に凸のグラフとなります．グラフは図 7です．

2. y = −x2 + 6x− 1

平方完成すると y = −(x− 3)2 + 8を得ます．よって，最大値は x = 3の時に y = 8

となります．頂点の座標が (3, 8)で上に凸のグラフとなります．グラフは図 8です．

3. y = 1
2x

2 − 2x

平方完成して y = 1
2(x− 2)2− 2となります．よって，最小値は x = 2の時に y = −2

となります．頂点の座標が (2,−2)で下に凸のグラフとなります．グラフは図 9です．

4. y = −3x2 + 6x+ 2

平方完成して y = −3(x−1)2+52となります．よって，最大値は x = 1の時に y = 5

となります．頂点の座標が (1, 5)で上に凸のグラフとなります．グラフは図 10です．
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図 7: 問題 150(1) 　　
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図 8: 問題 150(2)
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図 9: 問題 150(3)
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図 10: 問題 150(4)
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3 問題151の解説

3.1 151(1)

与式 y = x2 − 4x, (0 ≤ x ≤ 3)を平方完成します．

y = x2 − 4x

= x2 − 4x+ 4− 4

= (x− 2)2 − 4

頂点の座標 (p, q) = (2,−4)

対称軸　 x = 2

x軸との交点　 x = 0, x = 4で交わる
y軸との交点　 y = 0

原点を通る　
最大値　 x = 0のとき y = 0

最小値　 x = 2のとき y = −4

グラフ 図 11

3.2 151(2)

与式 y = x2 − 6x+ 7, (0 ≤ x ≤ 2)を平方完成します．

y = x2 − 6x+ 7

= x2 − 2(3)x+ (3)2 − 9 + 7

= (x− 3)2 − 2

頂点の座標 (p, q) = (3,−2)

対称軸　 x = 3

x軸との交点　 x = 3−
√
2, x = 3 +

√
2で交わる

y軸との交点　 y = 7

最大値　 x = 0のとき y = 7

最小値　 x = 2のとき y = −1

グラフ 図 12

3.3 151(3)

与式 y = −x2 + 2x+ 2を平方完成します．
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図 11: 問題 151(1)のグラフ
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図 12: 問題 151(2)のグラフ

y = −x2 + 2x+ 2

= −(x2 − 2x+ 1− 1) + 2

= −{(x− 1)2 − 1}+ 2

= −(x− 1)2 + 1 + 2

= −(x− 1)2 + 3

頂点の座標 (p, q) = (1, 3)

対称軸　 x = 1

x軸との交点　 x = 3−
√
2, x = 3 +

√
2で交わる

y軸との交点　 y = 2

最大値　 x = 1のとき y = 3

最小値　 x = −1のとき y = −1

グラフ 図 13

3.4 151(4)

与式 y = 2x2 − 8x+ 5を平方完成します．
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y = 2x2 − 8x+ 5

= 2

(
x2 − 4x+ 4− 4 +

5

2

)
= 2

{
(x− 2)2 +

−8 + 5

2

}
= 2(x− 2)2 − 3

頂点の座標 (p, q) = (2,−3)

対称軸　 x = 2

x軸との交点　 x = 3−
√
2, x = 3 +

√
2で交わる

y軸との交点　 y = 5

最大値　 x = 0, 4のとき y = 5

最小値　 x = 2のとき y = −3

グラフ 図 14
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図 13: 問題 151(3)のグラフ
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図 14: 問題 151(4)のグラフ

3.5 151(5)

与式 y = −x2

2 − x+ 3を平方完成します．
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y = −x2

2
− x+ 3

= −1

2
(x2 + 2x− 6)

= −1

2
(x2 + 2x+ 1− 1− 6)

= −1

2

{
(x+ 1)2 − 7

}
= −1

2
(x+ 1)2 +

7

2

頂点の座標 (p, q) = (−1, 72)

対称軸　 x = −1

x軸との交点　 x = −3, x = 2で交わる
y軸との交点　 y = 5

最大値　 x = −1のとき y = 7
2

最小値　 x = 2のとき y = −1

グラフ 図 14

3.6 151(6)

与式 y = 2x2 − 8x+ 5を平方完成します．

y = 2x2 − 8x+ 5

= 2

(
x2 − 4x+ 4− 4 +

5

2

)
= 2

{
(x− 2)2 +

−8 + 5

2

}
= 2(x− 2)2 − 3

頂点の座標 (p, q) = (32 ,−
1
2)

対称軸　 x = −1
2

x軸との交点　 x = 1, x = 2で交わる
y軸との交点　 y = 4

最大値　 x = 0のとき y = 4

最小値　 x = 3
2 のとき y = −1

2

グラフ 図 16
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図 15: 問題 151(5)のグラフ
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図 16: 問題 151(6)のグラフ
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4 問題161の解説

与式 y = −x2 + 4x+ 1を平方完成します．

y = −x2 + 4x+ 1

= −(x2 − 4x− 1)

= −(x2 − 4x+ 4− 4− 1)

= −
{
(x− 2)2 − 5

}
= −(x− 2)2 + 5

(1)と (2)ともに頂点の座標と対称軸は同一である．
頂点の座標 (p, q) = (2, 5)

対称軸　 x = 2

x軸との交点　 x =
4±

√
5

2
で交わる

y軸との交点　 y = 1

4.1 161(1)

グラフ図 17より
最大値　 x = 1のとき y = 4

最小値　 x = −1のとき y = −4

4.2 161(2)

グラフ図 17より
最大値　 x = 2のとき y = 5

最小値　 x = 1, 3のとき y = 4
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図 17: 問題 161(1)のグラフ
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図 18: 問題 161(2)のグラフ
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